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The problem of damping the sloshing in tanks with sharp-edged baffles (thin inserts which partially span a longitudinal or transverse 
cross-section) is considered. Separation of the boundary layer and the formation of vortices occur at these sharp edges. It is 
assumed that the domains where there is significant vortex motion of the fluid are localized in small neighbourhoods of the sharp 
edges of the baffles. The non-linear vortex damping is determined from the distribution of the velocity intensity factors at these 
sharp edges in the same way as the linear damping, caused by the dissipation of energy in a boundary layer close to a wall, is 
determined from the fluid velocity distribution on the walls of a cavity. Both of the above-mentioned distributions are calculated 
by solving the same boundary-value problem on the oscillations of an ideal fluid. The second of the distributions characterizes 
the singular properties of the solutions of this problem on particular lines. A method based on the variation of the area of the 
baffles, which simplifies the calculation of the velocity intensity factors is described. The distinctive features arising when the 
method of finite elements, is used are considered. The results of numerical calculations of the damping of sloshing in a cylindrical 
tank with a ring baffle are compared with experimental data. © 1998 Elsevier Science Ltd. All rights reserved. 

1. Consider the sloshing of a fluid with a free surface in a tank containing structures with sharp edges. 
The surface tension of the fluid is neglected. The fluid is assumed to be incompressible and of low 
viscosity and the boundary layer is assumed to be thin. During the sloshing, the boundary layer becomes 
separated from the sharp edges of the structures and vortices form. We assume that the sloshing 
amplitudes are so small that the vortex patterns formed are localized in a small neighbourhood of the 
sharp edges of the baffles. 

Outside small regions in the neighbourhood of the sharp edges and the boundary layer (on the walls 
of the tank and of the baffles) the motion of the fluid is assumed to be irrotational and is described by 
the displacement potential 

= Xs n (t)tp n (x, y, z) (1.1) 

in the form of a linear superpositioning of the natural modes of the oscillations ~p~ (n = 1, 2 . . . .  ), where 
x, y and z are the coordinates of a point in the fluid and t is the time. We know [3] that the natural 
modes of oscillation of a fluid are found as the solutions of the boundary-value problem 

Aq~=0, ~cp/3v=0 in S;~q~l~v=x~ in X (1.2) 

Here S is the surface of the walls of the tank and of the baffles wetted by the fluid, X is the free surface 
of the liquid, v is the unit vector of the outward normal to these surfaces and x = co2/j is a frequency 
parameter (co is the frequency of the oscillations of the fluid andj is the apparent acceleration). Taking 
the above assumptions into account, we refer the last boundary condition of (1.2) to the unperturbed 
plane free surface. 

We now introduce the generalized coordinates sn (n = 1, 2 . . . .  ) into (1.1) using the condition 

max ~pn / ~v = max ~q~ = 1 in X (1.3) 

where ×n = c°2/J is an eigenvalue of problem (1.2). They then determine the height of the waves on the 
free surface of the fluid. We note that only those modes of oscillation which bring about a displacement 
of the centre of mass of the fluid affect the motion of the tank. 

Since vortex damping turns out to be non-linear, that is, it depends on the amplitude of the waves, 
we shall also consider other methods of selecting the generalized coordinates. We introduce the new 
coordinates rn (n =: 1, 2 . . . .  ) by the formula 
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where ~'n is the unnormalized hydrodynamic force vector, /an is the apparent mass coefficient, p is 
the density of the fluid, and the directions of the vectors ~.n and rn are identical. These generalized 
coordinates determine the displacements of the masses m n = ~2/~n (n = 1, 2 . . . .  ) of the mechanical 
analogue [4]. The angles of deflection of the equivalent pendulums 

an -- ".rn (1 .5)  

are often chosen as generalized coordinates. 
The coordinates rn(t) and ctn(t) (n = 1, 2 . . . .  ) are convenient since they are independent of the 

normalization of the natural modes of oscillation. 
As a consequence of the above assumptions, in the zeroth approximation we determine all the 

hydrodynamic characteristics, apart from the dissipative characteristics, within the framework of the 
concept of the irrotational motion of an ideal fluid. Although, in irrotational motion, the fluid velocity 
becomes infinite at the sharp edges of the baffles, no such singularities arise when calculating these 
characteristics [4, 5]. Experimental data [4, 6] confirm the admissibility of such an approach in the case 
of the lowest slosh modes with sn(t)/D < 0, 1 (n = 1, 2), where D is the maximum linear dimension of 
the free surface of the fluid. 

2. We will now determine the damping and estimate of other corrections due to the vortex motion 
of the fluid in small domains. In order to do this, we consider the steady forced oscillations of the fluid 
at a frequency co which is close to one of the natural frequencies con, assuming that they are maintained 
by some external source of excitation. Neglecting, under these resonance conditions, the effect of the 
other slosh modes, we write the potential (1.1), omitting the subscript n for the number of the slosh 
mode, in the form 

= stp(x, y, z) sin tot (2.1) 

where s is the constant amplitude. 
We now distinguish three characteristic domains in the bulk of the liquid 
1. the domain of irrotational motion of the fluid; 
2. the domain of a small "distant" neighbourhood of the sharp edges where the fluid flow is described 

by the principal singular term of the solution of the problem of irrotational motion in which the velocities 
on the sharp edges become infinite; 

3. the domain of a small neighbourhood which is closer to the sharp edges where the fluid flow is 
substantially a vortex flow and there is a periodic change on the vortex patterns as a result of boundary 
layer separation. 

We determine the ratios of the orders for the dimensions of these domains in the following way: the 
characteristic size of the baffles and the tank are much greater and the boundary-layer thickness is much 
smaller than the characteristic size of the domain where there is significant vortex motion of the fluid. 

Under the assumptions which have been made, the formation of vortex patterns in the neighbourhoods 
next to the sharp edges is completely determined by the irrotational flow of the fluid in the small "distant" 
neighbourhoods of the edges. The domain of the distant neighbourhoods of the sharp edges are im- 
mediately adjacent to their closest neighbourhoods so that the characteristic dimension of its transverse 
cross-section is also much less than the width of the baffles. Therefore, the irrotational flow in this domain 
is close to plane flow and, in the cylindrical system of coordinates xr0, the x axis of which is directed 
along the tangent to the line of the sharp edge and the angle 0 is measured from the surface of the 
baffle, the potential (2.1) and the velocities or, t~0 can be written in the form 

~=[Ku-2~rcosO+O(r)] s i n t o t ~ - ~  -~ (2.2) 

Vr = L - ~  r c ° s ' ~ F  K~ O + O(1)lsintot ' u0 = [_  2.__~rr s in~+ O(l)]sino ~ K  v 0 

where Ku is the velocity intensity factor (VIF), which we note depends linearly on the amplitude s. The 
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following terms in the', asymptotic expansion (2.2) may also depend on the radii of curvature of the baffle 
if it is not plane and on the radius of curvature of the line of the sharp edge. 

The fluid flow in the distant neighbourhood of the edges is therefore characterized by the single 
parameter Ko, which can change along the length of the contour l of the sharp edge. In this case, the 
expenditure of energy in forming vortices during the period of the oscillations is determined using the 
formula [1] 

AE = Bp~ -:Z J I~*Adl (2.3) 
t 

where B ~ 2 is a universal constant. 
In the process under consideration, the damping of the oscillations of the fluid is associated with the 

transfer of energy from an irrotational form of motion to a vortex form of motion and is independent 
of the viscosity of the fluid. This is confirmed by experimental data [4, 6] over a wide range of high 
Reynolds numbers, calculated from the frequency of the oscillations and the characteristic dimension 
of the tank. The secondary process of the energy dissipation in the very small-scale vortices of the vortex 
patterns which are formed occurs as a consequence of the viscosity. 

The energy of the irrotational flow of the fluid can be written in the form E = ~tug/2, where ~t is the 
apparent mass (1.4) and u0 = cos is the characteristic velocity of the fluid for the corresponding mode 
of the oscillations. For the damping coefficient (DC), we find 

= A E  = r ( 2 . 4 )  
2E 

where R is the characteristic dimension of the tank. In the case of weak damping, the DC, 6, corresponds 
to the log decrement of the oscillations. Since t~ 0 = cos, it follows from (2.4) that the DC depends on 
the relative amplitude of the wave sir in the free surface of the fluid to the power of 2/3. On taking 
(1.4) and (1.5) into account, the DC can be represented as a function of the value of the amplitude of 
the generalized coordinate rn or ctn. 

Relation (2.4) only gives the non-linear vortex part of the DC for the oscillations of the fluid. The 
linear part of the DC, which is associated with the dissipation of energy in the boundary layer, can be 
independently determined using the formula [7] 

o r  3 - i(v 0)  a s  coR 2 

8 s v 
~ - ,  Re = (2.5) 

where v is the kinematic viscosity of the fluid and Re is a dimensionless parameter, equivalent to the 
Reynolds number. When account is taken of the fact that the characteristic size of the domain of vortex 
motion d ~ (KJ¢o) z/3 [1], in the case of the integration in (2.5) it is necessary to exclude from both sides 
of the baffles the area which is formed by the contour of the sharp edge I and the contour spaced at a 
distance d from it. 

We will now consider the effect of vortex patterns in the neighbourhood of the sharp edge s on the 
apparent mass (AM) of the fluid. In order to do this, we represent the AM of any slosh mode in 
the form ~t = ~t 0 + A~, where ~ is its magnitude for infinitesimal amplitudes of the oscillations. 
Under the above assumptions, the correction A~t can only depend on p, co and K o. Invoking similarity 
arguments [8], we find that 

dA~t I dl = B~pco-~ K~ A (2.6) 

where B~ ~- 0.5 is a universal constant, an approximate value of which can be determined with an error 
of +_10% from e~perimental data [6, 9] on the oscillations of plates in a fluid. 

By integrating (2.6), we represent the correction to the AM in the form 

~t0 = K.~--~J  , K. = B~ I~o ~(,Ruo2 ) R (2.7) 

In the case of a plate of infinite span with a width R executing oscillations perpendicular to its 
plane in an unbounded liquid, ~ = ~9R2/4 and K ~  r~Ru~/2 and, hence, from (2.7), we find the relation 
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% = g/go = I + I. 72(v o I(R[o)) 56 

for the coefficient of apparent mass. 
A comparison of this relation with experimental data [6, 9] (the small open circles) is shown in 

Fig. 1, plotted using the axes X = u0/(c0R) and Y =cra. In spite of its asymptotic nature, there is satis- 
factory agreement with the experimental data up to amplitudes comparable with the plate width. 

It can be seen from (2.7) that the correction to the AM depends on the relative slosh amplitude 
Uo/(o~R) = s/R to the power of 4/3 and it is therefore a quantity of the next order of smallness compared 
with the vortex damping (2.4). Consequently, the change in the AM as a consequence of the vortex 
motion of the fluid can be neglected to a first approximation over the range of small amplitudes of 
oscillation mentioned above. In the case of tanks with a characteristic dimension R - 1, the vortex 
damping (2.4) can be two orders of magnitude greater than the linear damping (2.5) over the same 
range of amplitudes of the oscillations. The change in the AM due to the boundary layer is proportional 
to Re -It2 and is very small [7]. 

Comparing expressions (2.4) and (2.5), we see that, in order to determine the linear damping, it is 
necessary to know the distribution of the velocities v of the fluid on the surface of the walls of the tank 
and of the baffles while, in order to determine the non-linear vortex damping, it is necessary to know 
the velocity intensity factors (VIFs), Ko, on the lines of the sharp edges of the baffles. These distributions 
are found by solving the same boundary-value problem (1.2) and, in this sense, the hydromechanical 
models used to determine the linear and vortex damping are approximations of the same order. However, 
it is much more difficult to calculate the VIFs since they characterize the singular properties of the 
solutions of problem (1.2) on particular lines. The usual numerical methods are therefore not suitable 
for this. We note that an analogous mathematical problem arises in linear fracture mechanics when 
calculating the stress intensity factors on the sharp edges of cracks in a solid [10]. 

3. We will now describe a method of determining the VIE Ko, which is based on a variation of the 
area of the surface of the baffles. We conceptually reduce the baffle area by a small amount 

= I n(Odl 
I 

where ~Sn is a variation of the normal to the contour of a sharp edge in a plane tangential to it. In this 
case, the eigenfunctions and eigenvalues of problem (1.2) change and we therefore denote them by q0~ 
and ×n (n = 1, 2 . . . .  ). To simplify the subsequent account, we shall omit the subscript n, as was done 
above when considering one of the slosh modes. 

8 8 The functions ~0 and (p, that is, % and (Pn, are harmonic inside the initial boundary surface, and 
Green's formula 

8 8 

I s +  I q s (3.1) 
X+S-rS uv  8S uv  X+$ ~V 

can therefore be used, having separated out integration with respect to a variation in the area ~S on 
the left-hand side. Note that the integration must be carried out over both sides of the baffle. 
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From (3.1), taking account of the boundary conditions of problem (1.2) and the asymptotic 
relations (2.2) for the potential cp an the velocity &pS//gv in the neighbourhood of the sharp edges, we 
obtain 

J Ko28n(l)dl = - ( x -  x 8)j" q~sdS (3.2) 
I E 

It is obvious that ,~ is only slightly different from q~, and we therefore write q)~ = q~ + 8q~. Using the 
notation ~Sx = × - ×~ and neglecting ~p~tp, on the right-hand side of (3.2) under the integral sign, compared 
with ~o 2, we finally obtain 

5 Ku28n( l)dl = - ~  q ~2dS (3.3) 
l ~, 

Relation (3.3) is satisfied for any slosh mode. 
By taking 8n(l) = 8n = const along the contour of the sharp edge and using (1.4), we can represent 

(3.3) in the dimensionless form 

"k" = -  ; ,5, , /R pR 3 
(3.4) 

where, as above, t¥ = ox~ is the characteristic velocity, ~t is the apparent mass and, if n is the number 
of the slosh mode, then to = co,, la = ~t, = ×n, fix = 8×, and s = s, (the amplitude of the wave on the 
free surface). Each mode has its own dimensionless value of the square of the VIF K~/(Ru2o) on the 
contour l of the sharp edge. 

In certain cases, the use of relations (3.3) and (3.4) enables us to simplify the determination of the 
VIF substantially and, in other cases, to control the accuracy of the calculation. For this purpose it is 
necessary to solve problem (1.2) several times for different small values of 8n. 

If ~the surface of a baffle in a small segment of the contour 1 is changed by 8S and it is assumed that 
Ko = const in this ,;egment, it then follows from (3.3) that 

or, in dimensionless form 

.K~ 2 --. ~ I.t 
Rv 2 ~8SIR2 pR3 (3.6) 

Relation (3.5) or (3.6) can be used for the direct calculation of the VIF when solving three-dimensional 
problems using finite element methods, but, in this case, eigenvalue problem (1.2) has to be solved a 
large number of times. A favourable exception is the two-dimensional problem when Ko = const over 
the whole length of the sharp edge. Two-dimensional flow conditions are well satisfied in the case of 
the transverse oscillations of a liquid in a long horizontally arranged cistern with longitudinal damping 
baffles of constant width. In this case, problem (1.2) has to be solved twice in order to determine the 
VIF for a single baffle using (3.5) or (3.6). 

4. We will now describe the use of finite element methods to solve a class of problems which is 
of practical importance. We consider the sloshing of a fluid in a tank, the surface of which is a 
surface of rotation containing transverse baffles which preserve the axial symmetry of its cavity. 
These may be annular, conical or cylindrical baffles or baffles made up of different combinations of 
these. 

Assuming that the apparent acceleration vector, j, is directed along the longitudinal axis of the 
tank in the opposite direction to the x axis of the cylindrical system of coordinates xr0, we will seek 
the potential in the form ~0 = f(x, r) cos 0, which is confined to just those modes of oscillation for 
which the principal vector of the hydrodynamic forces is non-zero. Since the angular coordinate 0 is 
separated out, we find the solutions of problem (1.2) among the functions for which the discrete 
functional 
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s, Lt ) 
+~,Or) + - x Z S f 2 r d l  

lk 
(4.1) 

is an extremum. Here Si is the area of the ith finite element in the domain of the radial cross-section 
of the fluid volume of the cavity, lk is the kth side of one of the finite elements belonging to the line of 
the free surface of the fluid in this cross-section, Y--Si is the cross-section area and Xlk is the line of the 
free surface in this cross-section. 

We will use isoparametric triangular finite elements of quadratic order with simplex coordinates [11, 
12]. We shift the middle points of the sides of the finite elements, which meet in the sharp edge, by 1/4 
of the length of the corresponding side towards the sharp edge. In this case, a Jacobian transformation 
from the x, r coordinates to the simplex coordinates ensures the required singularity [13] in the fluid 
velocities close to the sharp edge which considerably increases the accuracy of the solution of the prob- 
lem. The one- and two-dimensional integrals in (4.1) are calculated using the Gauss quadrature formulae 
with 3 and 4 mesh points, respectively. 

It is convenient to consider the baffles as being infinitesimally thin. Therefore, the nodal points, lying 
on the different sides of the baffles in the lines corresponding to these baffles in the domain of the 
radial cross-section, are distinguished but, in this case, they have the same coordinates (double nodal 
points). 

The condition for an extremum of the discrete functional (4.1) leads to a common eigenvalue problem 
in linear algebra in which the values of the functions f at the nodal points of the finite elements are 
unknown. The problem is solved by the method of iterations in the subspace, assuming that one of the 
matrices has a band structure and that the other is very sparse matrix. 

In the case under consideration, the lines of the sharp edges of the baffles are circles. Along 
these lines, the dependence of the VIF on the angle 0 is obviously the same as for the potential ~p and, 
therefore 

K~ (0) = Ko0 cos0 (4.2) 

Substituting (4.2) into (3.4), we find that 

~r o K~20 ~ ~t 
R Rv 2 = xSn lR  pR T (4.3) 

where r0 is the radius of the line of the sharp edge and Ko0 is the maximum value of the VIF on the 
line of this edge. 

By first calculating the eigenvalues × = ×n (n = 1, 2 . . . .  ) and the apparent masses ~t = ~n (n = 
1, 2 . . . .  ) when 5n = 0 using finite element methods and then the changes in the eigenvalues 6× = 8×n 
(n = 1, 2 . . . .  ), the VIE Koo, corresponding to these modes are determined for a given baffle using 
formula (4.3). After this, taking account of (4.2), the contribution from a given baffle to the damping 
coefficient of the oscillations of the fluid ~ = 8n (n = 1, 2 . . . .  ) is determined using formulae (2.4). The 
overall damping coefficients are found by summing the contributions from all of the baffles. As a rule, 
it is only the first slosh mode (n = 1) which is of practical interest. 

The algorithm which has been described was programmed in FORTRAN and included in a general 
program designed to determine the hydrodynamic characteristics of fuel tanks. 

5. We will now present some results of calculations using finite element methods of the damping of the 
fundamental first mode of the oscillations of a fluid in a cylindrical tank with a single ring baffle. It is assumed 
that the apparent acceleration vector is directed along the tank axis and is perpendicular to the plane of the 
baffle. Suppose b is the width of the baffle, h is the height of the fluid above its plane and that A is the gap 
between the baffle and the cylindrical wall of the tank. The radius of the cylinder R is taken as the characteristic 
dimension. 

Figure 2 shows the results of the finite element calculation of the VIF (Y = K~/(Ro2o)) and of the coefficient K 
in formula (2.4) which determines the magnitude of the damping of the sloshing as a function of the width b of a 
baffle, set up without a gap (A = 0) and sunk to depths of h/R = 0.2 and h/R = 0.3. The smaller values of the VIFs 
and K correspond to the greater depth. The values of K are shown by the solid lines obtained by interpolation 
using the results of the calculations, while the VIFs are shown by the dashed lines. Maximum damping is obtained 
for b/R ~- 0.4. 

Relation (2.4) is compared with the experimental data in Fig. 3 for the following versions 
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Version 1 2 3 4 
blR 0.1 0. I 0.2 0.2 
hlR 0.3 0.2 0.3 0.2 

The results of the calculations are represented by the solid lines; the results of a treatment of the experimental 
data [4] using an empirical dependence of the form 6 = K~s [14] are represented by the dashed lines and 
the experimental data obtained by Mel'nikova after the publication of the book [4] are represented by the 
points. 

The results of the investigation into the effect of a gap between the baffle and the tank wall are shown in 
Fig. 4. They were obtained in the case of ring baffles of constant width b/R = 0.12 arranged at a depth h/R = 0.1 
from the free surface of the liquid. Small gap values, for which an increase in the damping compared with baffles 
set up without a gap has been found experimentally, are of interest. 

The dependences of the VIF K~0 on the size of the gap A plotted using the axes X = ~/b, Y = K2~/(Rt~2o) are 
represented by the solid lines. Large values of VIF correspond to an external edge located close to the wall. As 
the gap is reduced, the VIFs on both sharp edges increase. In this case, the VIF on the inner edge tends to its own 
limiting value for a baffle without a gap and it makes sense to calculate the VIF on the outer edge in accordance 
with one of the assumptions made until A->~/(v/o), that is, while the gap width is much greater than the boundary- 
layer thickness. 

The dependence of the coefficient K on the gap width (X = ~/b), constructed from formula (2.4) using the VIF 
values depicted by the solid lines, is shown by the dashed line. All the lines in Fig. 4 are interpolations using the 
results of the calculatio:as. It can be seen that an increase in the damping is actually observed when A/b < 0.12. 
These results are in qualitative agreement with the experimental data obtained in the case of other baffles. The 
position and value of the maximum in the dashed line depends on the viscosity of the fluid which, as noted above, 
restricts the growth of the VIF on the outer edge of the baffle. Note that, when Nb = 0.04, the gap is less than 
1/200 of the radius of the tank, and the proposed approach therefore enables one to determine the non-linear 
vortex damping of the sloshing taking account of extremely small-scale constructional features. 
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